

C. Clément (Stockholm University) for ATLAS
Brookhaven Forum 2008, "From LHC to Cosmology"

http://atlas.ch

THE LARGE HADRON COLLIDER (LHC)

THE LARGE HADRON COLLIDER

POINT 4

Process	σ (nb)	Events
		$(\int \mathcal{L} dt = 100 \text{ pb}^{-1})$
Min bias	108	~10 ¹³
bb	5·10 ⁵	~1012
Inclusive jets p _T > 200 GeV	100	~ 10 ⁷
$W \rightarrow ev, \mu v$	15	~ 10 ⁶
$Z \rightarrow ee, \mu\mu$	1.5	~ 10 ⁵
tt	0.8	~ 104

THE LARGE HADRON COLLIDER

p-p collisions 14 TeV Luminosity $10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

4 experiments to explore the constituents of matter and their interaction at 10⁻¹⁹m

THE LARGE HADRON COLLIDER

ATLAS

ATLAS PARTICLE ID

SUPERSYMMETRY (SUSY)

Differ with ½ unit spin Here consider N=1 SUSY particle per SM particle

Why Supersymmetry?

Hierarchy problem Susy~O(TeV)
Dark matter candidate (perhaps)
Additional source of CP violation
Unification
EW symmetry breaking

Mass states $\tilde{\chi}_{i}^{0} = \sim \text{linear}$ combinations of \tilde{H} , \tilde{B} , \tilde{W}^{0} $\tilde{\chi}_{1}^{0}$ is the lightest of these states

Supersymmetry must be broken
MSSM > 120 parameters
Or provided model of SUSY breaking
SUGRA, GMSB, AMSB

SOME CONSTRAINED SUSY MODELS

By providing a model of how SUSY is broken, the number of parameters (100+ in MSSM) can be largely reduced.

Gravity mediated: mSugra (4+1 sign)

LSP can be
$$\tilde{\chi}^0_1$$
, \tilde{G} , $(\tilde{\tau})$, ... $m_{\tilde{G}}$: 1 GeV – 1 TeV

G plays no role in accelerator pheno

CMSSM, milder assumptions than mSugra

unified scalar masses, gaugino masses, A..

Gauge Mediated SUSY Breaking

LSP is G (SUSY partner of graviton)

R-parity needs not to be conserved for \widetilde{G} WDM $m_{\widetilde{G}} < \sim 1 GeV$,

Lifetime of NLSP gives handle on SUSY breaking scale ...

Phenomenology dependent on NLSP =
$$\widetilde{\chi}^0_1 \ \widetilde{\zeta}_R \ \widetilde{v} \ \widetilde{\tau} \ \widetilde{t}_1$$
 $\widetilde{\chi}^0_1 \to \widetilde{G} \gamma \ \widetilde{\zeta}_R \to \widetilde{G} \ell$

Susy, R-Parity & Cosmology

R parity introduced to force proton stability

R = +1 for SM and R = -1 for SUSY

If R parity is converved

Susy pair production

LSP is stable

neutralino LSP or gravitino LSP=> NLSP relevant (GMSB)

R partity violated

- RPV couplings small from exp. data
 - => SUSY pair production is anyway a good approximation
- violation can be large enough so that LSP decays inside detector
- violation <u>can be small enough</u> that at accelerator based experiments cannot distinguish b/w RPV and R parity is conserved.
- in any case relevant to cosmology
- but not necessarily relevant to explain today's dark matter

Susy Production at LHC

Tevatron limits on g,q masses

Production at LHC dominated by strong interacting sparticle:

Mass hierarchy strongly model-dependent

Or
$$\widetilde{\chi}_i$$
 $\widetilde{\chi}_i$ if m(\widetilde{q}), m(\widetilde{g})>> $\sim \sqrt{s/6}$ (cf Tevatron, LEP)

R-parity is conserved* sparticles are pair produced pp $\rightarrow XY$

Potentially long decays chains:

 $\sigma(\tilde{q}\tilde{q})$ as high as 50 pb

* still valid if only mildly violated

11

SUSY EXPERIMENTAL SIGNATURES AT LHC

Long decay chains Strongly model dependent... 2 LSP per event E_T^{miss} signature

 $n jets + m leptons + E_T^{miss}$

or $\tilde{\mathbf{v}}$

GMSB signature with E_T^{miss} alike mSUGRA, but also with 2 high energy γ / event or 2 high energy τ

NLSP lifetime depends on $C_{\rm grav}$

$$C_{grav} = m_{3/2} / m^o_{3/2}$$

$$C_{grav}^{\circ} \sim 1 \implies \text{prompt NLSP decay}$$

 $C_{grav} >> 1 \Rightarrow NLSP$ decay outside the detector

Lifetime measurable if in range mm-km

ATLAS BENCHMARK POINTS

SU1 "Coannihilation Region"

m(\mathfrak{g})~830 GeV m(\mathfrak{q})~750 GeV \mathfrak{X}_{1}^{0} annihilates with ℓ

SU2 "Focus Point"

 $m(\tilde{g}) \sim 860 \text{ GeV } m(\tilde{q}) \sim 3500 \text{ GeV}$ $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \text{WW enhanced } (\tilde{H} \text{ comp.})$

SU3 "Bulk Point"

 $m(\tilde{g})\sim720~{\rm GeV}~m(\tilde{q})\sim620~{\rm GeV}$ $\tilde{\chi}_1^0\tilde{\chi}_1^0$ annihilation via $\tilde{\ell}$

SU4 "Low mass"

m(\tilde{g})~420 GeV m(\tilde{q})~420 GeV Close to Tevatron's bound

SU6 "Funnel Regions"

m(g)~900 GeV m(q)~870 GeV t decays dominates

CMSSM

Strong constraints from

- •LEP + Tevatron direct searches
- •WMAP, $m_ho > 114 \text{ GeV}$, $g_u 2$, $b \rightarrow s \gamma$

13

SEARCH CHANNELS

$\begin{array}{l} \textbf{0-lepton} + \textbf{n jets} + \textbf{E}_{\textbf{T}}^{\textbf{miss}} \, \textbf{search} \\ \textbf{n=4:} \\ \textbf{jets} \, / \, \textbf{E}_{\textbf{T}}^{\textbf{miss}} \, \textbf{triggers} \\ \textbf{p}_{\textbf{T}}(\textbf{jet1}) &> 100 \,\, \text{GeV}, \, \textbf{p}_{\textbf{T}}(\textbf{jet4}) &> 50 \,\, \text{GeV} \\ \textbf{E}_{\textbf{T}}^{\textbf{miss}} &> 100 \,\, \text{GeV}, \, \, \textbf{E}_{\textbf{T}}^{\textbf{miss}} &> 0.2 \,\, \text{Meff} \\ \textbf{S}_{\textbf{T}} &> 0.2 \,\, \\ \textbf{E}_{\textbf{T}}^{\textbf{miss}} \, \, \textbf{not} \, \, \textbf{aligned} \, \, \textbf{with} \, \, \textbf{jet1-3} \\ \textbf{e}/\mu \, \, \textbf{veto} \\ \textbf{M}_{\textbf{eff}} &> 800 \,\, \text{GeV} \\ \textbf{Also} \, \, \textbf{n=2}, \, 3 \end{array}$

$\begin{array}{l} \textbf{1-lepton} + \textbf{n jets} + E_{T}^{miss} \, search \\ \textbf{n=4:} \\ & 1 \, e/\mu \, 20 \, GeV, \, 2^{nd} \, lepton \, veto \\ & leton/ \, jets \, / \, E_{T}^{miss} \, triggers \\ & p_{T}(jet1) > 100 \, GeV, \, p_{T}(jet4) > 50 \, GeV \\ & E_{T}^{miss} > 100 GeV, \, E_{T}^{miss} > 0.2 \, Meff \\ & S_{T} > 0.2 \\ & M_{T} > 100 GeV \\ & M_{eff} > 800 \, GeV \\ & Also \, n=2, \, 3 \, studied \end{array}$

0-lepton backgrounds

QCD with fake ETmiss $tt \rightarrow jets, Z \rightarrow vv$ $W \rightarrow \ell v$ non reconstructed ℓ

1-lepton backgrounds

QCD with fake E_T^{miss} + fake lepton $tt \rightarrow \ell + jets$,

 $W \rightarrow \ell \upsilon + jets$

Potentially easier to understand 14 than 0-lepton backgrounds

ATLAS POTENTIAL FOR DISCOVERY

(GeV)

m_{1/2}

Discovery potential illustrated in mSugra R is converved

Detailed cuts depend on N leptons

Significance estimate includes

systematic uncertainties from:
QCD background estimate 50%
tt, V+jets, VV+jets 20%
Motivated by techniques for
data driven estimation of backgrounds

D0 / Tevatron 2 fb-1

ATLAS POTENTIAL FOR DISCOVERY / GMSB

Prompt NLSP decay in GMSB $\tilde{\ell} \to \tilde{\mathsf{G}} \ell$

Λ [TeV]

GMSB scan, NLSP = slepton

2 leptons per GMSB event

SUSY PRECISION MEASUREMENTS

1) Extract observables

 $l^+ l^-$ edge $l^+ l^- q$ edge $l^+ l^- q$ threshold $l^\pm q$ high-edge $l^\pm q$ low-edge $m_{ll}^{max} \ m_{llq}^{max} \ m_{lq}^{min} \ m_{lq}^{high} \ m_{lq}^{low}$

2) Fit Susy masses to observed edges

 $\widetilde{\chi}_1^{\,0}$, $\widetilde{\chi}_2^{\,0}$, $\widetilde{\ell}_R$, \widetilde{q}_L (\widetilde{q}_R) can be extracted Requires some knowledge of mass hierarchy

3) Fit model parameter to masses

How to Extract Mass of \widetilde{q}_R

SUSY events pp $\rightarrow \tilde{q}_R \tilde{q}_R$ 5% in SU4 and 10% in SU3 with decay: $\tilde{q}_R \rightarrow \tilde{\chi}_1^0 q$

- $E_{T}^{miss} > max(200 \text{ GeV}, 0.25 \text{ M}_{eff})$
- $M_{eff} > 500 \text{ GeV}$
- 2 Jets with $p_T>max(200 \text{ GeV}, 0.25M_{eff})$
- Jets have $\eta < 1$, $\Delta R > 1$
- No additional jets with p_T >min(200 GeV, 0.15 M_{eff})
- No isolated leptons, no b-jets
- $S_T > 0.2$

Extract $m_{\overline{q}_R}$ from m_{T2} fit

EG. SUSY MEASUREMENTS AND COSMOLOGY

- How to relate the model independent observables to the model is the tricky part
- Keep template models consistent with the model independent measurements
- From the surviving models compute expectation of DM relic density
- Which one are compatible with cosmological observations?

Distribution of relic density for the surviving models

M.M. Nojiri, G. Polesello, D. Tovey JHEP 05 (2004)

20

* SPS1a ~ similar to bulk region

SUSY WITH PHOTONS

GMSB with $\tilde{\chi}_1^0$ NLSP Lifetime of NLSP determined by model parameter C_{grav}

	cτ	$ m C_{grav}$
"Prompt"	1.1 mm	
GMSB2	95 cm	
GMSB3	3.2 m	

100

200 Λ [TeV]

150

Selections for prompt y SUSY

- 1) "SUSY-style" $p_{T}(jet1) > 100 \text{ GeV}, p_{T}(jet4) > 50 \text{ GeV}$ $E_{T}^{miss} > 100 \text{GeV}, E_{T}^{miss} > 0.2 \text{ Meff}$
- 2) + 1 or 2 isolated γ with p_T>20 GeV, $|\eta| < 2.5$

48.9 % (16.4%) of GMSB1 have 1 (2) photons with p_T>20 GeV, $|\eta|$ <2.5 Photon ID efficiency ~ 65%

SEARCH FOR LONG LIVED SUSY PARTICLES

Measure lifetime of $\widetilde{\chi}_1^0 \to \widetilde{\mathsf{G}} \gamma$ from:

- i) Z' distribution
- ii) Calorimeter timing

In both methods, careful calibration & study of biases necessary

R-HADRON AND STABLE SLEPTONS

R-Hadron = supersymmetric hadrons

- Split SUSY with stable 9
- SUSY with t₁ NLSP and G LSP

4		
	,	

Events / fb ⁻¹ After selections			
$600~{ m GeV}~{ m R_g}$	2700		
$1000~{\rm GeV}~R_{\rm g}$	10.7		
$2000~{\rm GeV}~{\rm R_g}$	0.013		
$1000~{\rm GeV}~R_{\rm t}$	0.1		
SM Background	1.7		

 $q^{ID}p_{T}^{ID}/q^{\mu}p_{T}^{\mu}$

Metastable sleptons in GMSB $\tau \rightarrow \tilde{G} \tau$

> Measured vs true β at L2 trigger

mass>40 GeV

CONCLUSION AND OUTLOOK

ATLAS should be able to discover Supersymmetry whether RPV is violated or not up to O(TeV) scale.

Sensitive to signatures such as: $\begin{array}{c} multi\text{-jet} + E_T^{miss} + n \text{ leptons} \\ n \ \gamma + E_T^{miss} \\ \tau + \text{jet} \\ long \ lived \ sleptons \ or \ R\text{-hadrons} \end{array}$

Sensitive to a wide range of scenarios, with § and/or q masses up 1-2 TeV

Get a map of states where Susy (or sthg else) is observed and constrain model.

Consequence and consistency for cosmology

BACKUP SLIDES

Some definitions for SUSY analyses

Effective Mass $M_{eff} = \sum_{1-4} p_T^{jet} + \sum_{T} p_T^{leptons} + E_T^{miss}$

Transverse Sphericity $S_T=2 \lambda_2/(\lambda_1+\lambda_2)$

 2×2 transverse sphericity tensor: $S_{ij} = \sum_k p_{ki} p^{kj}$ (sum runs over jets and lepton)

Transverse Mass $M_{T}\text{=}\ (m^{\alpha})^{2}$ + $\mathbf{p^{\alpha}}_{T}$, $\mathbf{p_{T}}^{\mathbf{miss}}$

stransverse Mass =

$$egin{aligned} m{m}_{T2}^2(\mathbf{p}_T^lpha,\mathbf{p}_T^eta,\mathbf{p}_T^{ ext{miss}},m_lpha,m_eta,m_lpha,m_lpha) &\equiv \min_{m{q}_T^{(1)}+m{q}_T^{(2)}=\mathbf{p}_T^{ ext{miss}}} \left[\max\left\{ m{M}_T^2(\mathbf{p}_T^lpha,m{q}_T^{(1)};m_lpha,m_lpha), \, m{M}_T^2(\mathbf{p}_T^eta,m{q}_T^{(2)};m_eta,m_lpha)
ight\}
ight] , \end{aligned}$$

How to Extract Mass of \widetilde{q}_R

SUSY events pp $\rightarrow \tilde{q}_R \tilde{q}_R$ 5% in SU4 and 10% in SU3 with decay: $\tilde{q}_R \rightarrow \tilde{\chi}_1^0 q$

- $E_{T}^{miss} > max(200 \text{ GeV}, 0.25 \text{ M}_{eff})$
- $M_{eff} > 500 \text{ GeV}$
- 2 Jets with $p_T>max(200 \text{ GeV}, 0.25M_{eff})$
- Jets have $\eta < 1$, $\Delta R > 1$
- No additional jets with p_T >min(200 GeV, 0.15 M_{eff})
- No isolated leptons, no b-jets
- $S_T > 0.2$

Extract $m_{\overline{q}_R}$ from m_{T2} fit

SUSY PRODUCTION AT LHC

Tevatron limit on g, q masses

SQUARKS, GLUINOS LIMITS FROM TEVATRON

Yellow band shows the huge effect of PDF (and RF scale) uncertainty (CTEQ6.1M) on the signal NLO cross section (25 to 75%) due to the poor knowledge of gluon at high x: more constrains will come from recent QCD results from DØ

Results can also be shown as a function of the mSUGRA parameters

	•	•	
tan(b)=	$3, A_{\circ} =$	0, m	<0

	M(Gluino)		M(Squark)	
	obs.	exp.	obs.	exp.
Я(min)	308	312	379	377
Я(nom)	327	332	392	391
Я(max)	349	354	406	404

Most conservative case: signal cross section diminished by its uncertainty due to PDF/RF scale:

For Msquark=Mgluino , M(sq-gl) > 390 GeV

LEP2 limits improved for m0 between 70 and 300 Ge²

ATLAS MSUGRA BENCHMARK POINTS

- SU1 m₀ = 70 GeV, m_{1/2} = 350 GeV, A₀ = 0, tan β = 10, μ > 0. Coannihilation region where χ

 ⁰₁ annihilate with near-degenerate ℓ

 [−].
- SU3 m₀ = 100 GeV, m_{1/2} = 300 GeV, A₀ = -300 GeV, tan β = 6, μ > 0. Bulk region: LSP annihilation happens through the exchange of light sleptons.
- SU4 $m_0 = 200$ GeV, $m_{1/2} = 160$ GeV, $A_0 = -400$ GeV, $\tan \beta = 10$, $\mu > 0$. Low mass point close to Tevatron bound.
- SU6 m₀ = 320 GeV, m_{1/2} = 375 GeV, A₀ = 0, tan β = 50, μ > 0. The funnel region where 2m_{χ̃1} ≈ m_A. Since tan β ≫ 1, the width of the pseudoscalar Higgs boson A is large and τ decays dominate.
- SU8.1 m₀ = 210 GeV, m_{1/2} = 360 GeV, A₀ = 0, tan β = 40, μ > 0. Variant of coannihilation region with tan β ≫ 1, so that only m_{ξ1} − m_{Z1} is small.
 - SU9 $m_0 = 300$ GeV, $m_{1/2} = 425$ GeV, $A_0 = 20$, $\tan \beta = 20$, $\mu > 0$. Point in the bulk region with enhanced Higgs production

Coannihilation region

Difficult to observe at LHC, very soft taus due to small $\Delta M(\tau, \tilde{\chi}^0)$

$$\tilde{\chi}^0_1$$
 relic density $\sim 1/<\sigma v>$

⇒ need to know the couplings

Strong constraints from

•LEP + Tevatron direct searches

•WMAP, $m_ho>114$ GeV, g_μ -2, $b\rightarrow s\gamma$

$$\widetilde{\chi}^{\scriptscriptstyle 0}_{1}\,\widetilde{\chi}^{\scriptscriptstyle 0}_{1}\!\to\!\tau\,\,\tau\,\,\,\widetilde{\chi}^{\scriptscriptstyle 0}_{1}\,\,\widetilde{\tau}\to\!\tau\gamma$$

